Control Strategies for Hybrid AC/DC Grids

Adedotun J. Agbemuko 1,2

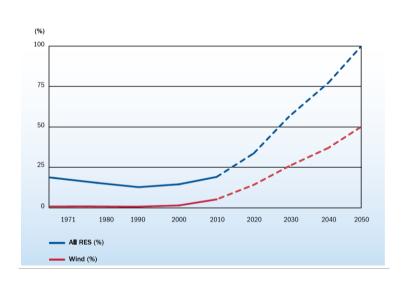
Supervisors: Jose Luis Dominguez-Garcia¹, Oriol Gomis-Bellmunt²

- ¹ Catalonia Institute for Energy Research (IREC), Spain
- ² Department of Electrical Engineering, Technical University of Catalonia (UPC), Spain

Doctoral Program: Electrical Engineering

UPC, 15 February 2018 - Barcelona, Spain

- Motivation and thesis objectives
- Methodology
- Preliminary results
- Working plan



Outline

- Motivation and objectives
- 2 Methodology
- 3 Preliminary results
- 4 Working plan

Motivations

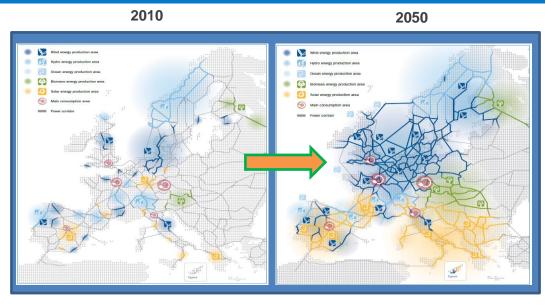


Fig. 1 Contribution of Renewable energy to electricity consumption and expected contribution up till 2050 Source: EWEA EU Energy Policy to 2050

New Interconnections expected to be HVdc and for technical reasons Meshed HVdc will be the end goal

Challenge

- System is dynamics is changing and will continue to change for the worse.
- There is need to identify new phenomena and put control in place to mitigate undesirable responses.

Focus of the work

- Voltage source converter (VSC) dominated hybrid ac/dc grids.
- System-level approach:
 - High voltage level,
 - Meshed grids.
- Identify and understand new phenomena as regards to converter penetration for different case studies.
 - Dynamic studies.
- Control strategies for mitigation of undesirable responses, which includes:
 - Improvement of dynamic responses,
 - Control under harsh conditions, such as weak grids,
 - Coordinated control.
- Advanced control for ancilliary services

Outline

- 1 Motivation and thesis objectives
- Methodology
- 3 Preliminary results
- 4 Working plan

Methodology

Impedance modelling paradigm:

- Each subsystem is modelled with its impedance equivalent,
- all input devices are modelled with their equivalent impedance+control,
- that is, converters, controlled devices, synchronous generators, etc.

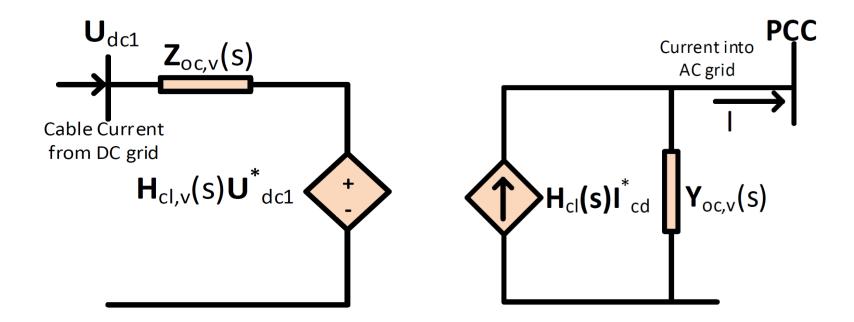


Fig. 3 Subsystem Approach to impedance modelling of hybrid grids

Methodology

- System level aggregation:
 - Thevenin equivalents,
 - Norton equivalents.
 - Multivariable Systems theory.

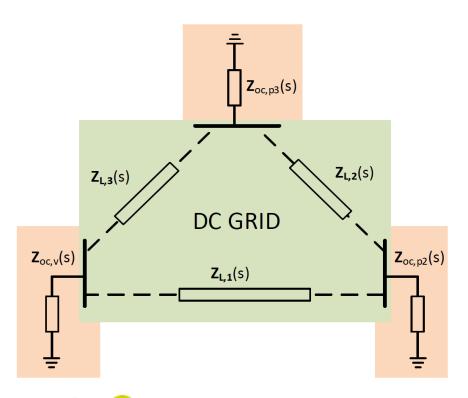


Fig. 4 System aggregation

$$\begin{bmatrix} Z_{11}^{dc} & Z_{12}^{dc} & \dots & Z_{1n}^{dc} \\ Z_{21}^{dc} & Z_{22}^{dc} & \dots & Z_{2n}^{dc} \\ \vdots & \vdots & \ddots & \vdots \\ Z_{n1}^{dc} & Z_{n2}^{dc} & \dots & Z_{nn}^{dc} \end{bmatrix}$$

Methodology

- Analysis (Frequency, time domains):
 - o Nyquist,
 - o Root locus,
 - o Bode for SISO, SVD for MIMO, amongst others,
 - Multivariable system analysis.
- Controller design:
 - H_∞ H₂ robust controllers for resonance mitigation and improving dynamic responses,
 - Diagonal controller for decoupling,
 - SVD analysis.

- o Robust control formulation,
- \circ $H_{\infty_{,}}$ H_{2} robust controllers for resonance mitigation and improving dynamic responses.
- Multivariable system approach, output channel damping,
- Controller strategies and design,
- Active damping design,
- Detailed modelling (EMT)

Future Case Studies

Influence of Power Direction on Grid Stability of (Hybrid AC/DC Grids) Considering Fixed Control Architectures

Impact of SCR on Hybrid AC/DC Grid Stability: An Impedance Approach

Interactions between Synchronous Generation and Embedded MTdc Grids

Understanding the Influence of Operating point on the Stability and Resonances in VSC-HVdc Systems

Influence of different DC Capacitance Values on resonances in AC systems Connected via MTdc Grid

Thank you!

aagbemuko@irec.cat

